Update: USP Chapters on Biological Assays

Tim Schofield
GlaxoSmithKline

Presented at the BEBPA Biological Assays Conference

September 29, 2011, Nice, France
Outline

- Chapters history
- Chapters update and next steps
- USP bioassay chapters themes
- New and refreshed concepts
Chapters history

- The USP statistics expert committee was assigned to “modernize” *USP <111> Design and Analysis of Biological Assays*
 - Written over 50 years ago prior to modern computational methods
 - Difficult to implement in practice
 - Work undertaken in 2001 by the USP ad hoc Panel on Biological Assays
 - Panel of biologists and statisticians working in the field of biological assays
Chapters history (cont.)

- A suite of chapters evolved over time
 - <111> was split into two chapters, USP <1032> Biological Assay Development and USP <1034> Biological Assay Analysis
 - <1033> Bioassay Validation added to the suite

“Roadmap” chapter (to include glossary)
Chapters update and next steps

- All but chapter <111> are above 1000 and therefore “informational”
 - Not intended as enforceable (as chapters below 1000)
 - However, the chapters provide a set of best practices which might be considered by regulators in their reviews
- Chapter <111> left to support monographs which reference it
 - USP is working towards addressing product-specific references to prepare it for further revision
Chapters update and next steps

- The bioassay chapters appeared in USP Pharmacopeial Forum (PF) 34(4), July 2010
 - Comments received through October 2010
 - Comments incorporated into final drafts by May 2011
 - Commentary will appear on the USP website
 - Published in USP/NF May 2012
 - Official August 2012
USP bioassay chapter themes

- Relative potency bioassay
 - Although concepts translate well to other dilution based systems
- Lifecycle approach to validation
- Building quality into the bioassay through strategic development
- Proper analysis including acknowledgement of bioassay structure
- Fitness for use validation
New and refreshed concepts

- Fitness-for-use
- Bioassay optimization
- Transformation and weighting
- Geometric coefficient of variation
- Blocking and randomization
- Similarity and equivalence testing
- Characterization
Fitness for use

- The bioassay should be fit for all of its intended uses throughout product development, manufacture, and QC
 - Engineering the process and formulation
 - Linking materials throughout development
 - Developing potency specifications
 - Defining product stability
 - Commercial product release
 - Bridging performance and stability after a process change
Bioassay optimization

- Optimization elements
 - Bioassay system
 - Number of dilutions and dilution steps of standard and test materials
 - Number to support processing
 - Steps to support potency range
 - Intra-run replicates
 - Strategic design to yield optimal performance
 - Aliquots or independent series
 - Inter-run replicates
 - Drives precision of “reportable result”
Bioassay optimization

 Optimization elements

 Bioassay system (cont.)

 - Should be engineered to planned processing
 - Parallel line/curve analysis for log-normally distributed responses using log dilutions
 - Slope ratio analysis for normally distributed responses using arithmetic dilutions

 Bioassay conditions

 - Ranges of assay parameters which yield acceptable bioassay performance (bioassay design space)
 - Using multifactor design of experiments (DOE)
Bioassay optimization (cont.)

- Optimization using multifactor design of experiments (DOE)
 - Step 1 – bioassay process map
 - Step 2 – screening potentially significant factors
 - Step 3 – Perform response surface experiment to determine region of optimal performance (design space)

<table>
<thead>
<tr>
<th>Run</th>
<th>Ion.St.</th>
<th>Time</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>1</td>
<td>36°</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>1</td>
<td>32°</td>
</tr>
<tr>
<td>3</td>
<td>0.1</td>
<td>2</td>
<td>36°</td>
</tr>
<tr>
<td>4</td>
<td>0.1</td>
<td>2</td>
<td>32°</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>1</td>
<td>36°</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
<td>1</td>
<td>32°</td>
</tr>
<tr>
<td>7</td>
<td>0.2</td>
<td>2</td>
<td>36°</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
<td>2</td>
<td>32°</td>
</tr>
</tbody>
</table>
Transformation and weighting

- Assumptions of statistical modeling
 - Correct model
 - Parallelism
 - Curvature
 - Normality (of residuals)
 - Equal variance

- A log transformation of the bioassay measurements will typically generate measurements which are approximately normal, with equal variance.

- Alternatively, weighting might be used to favor dilutions with higher precision.
 - Note: never weight by the observed variance – power of the mean (POM)

\[
 w_i = \frac{1}{\text{var}(y_i)}
\]

\[
 \text{POM} = \frac{1}{y^{(x)}}
\]

log – transformation is a member of the POM family.
Geometric coefficient of variation

- The bioassay system yields log-normally distributed measurements
 - Horizontal shift in log dilution/concentration (M)
 - Relative potency is e^M (a geometric mean or GM)

- Measures of variability for “multiplicative” measurements were defined by Kirkwood in 1972
 - Geometric standard deviation (GSD) is defined as e^s
 - GSD is a multiplicative factor such that the range $M \pm s$ is directly related to $e^{M \pm s} = (e^M \div e^s, e^M \cdot e^s)$; i.e., GM divided and multiplied by GSD
 - Geometric coefficient of variation is defined as
 \[GCV = 100 \cdot (\text{GSD} - 1) = 100 \cdot (e^s - 1) \]
Bias is introduced into bioassay measurement through operational factors such as location effects.

Uniformity testing should be performed during development to establish if there are location effects in the bioassay.

- Cage effects in an *in vivo* bioassay
- Plate effects in an *in vitro* bioassay
- Effect of time from beginning to end of testing a series of samples

A trend is observed across columns of the plate.
Blocking and randomization (cont.)

- The potential bias due to location effects can be moderated through blocking and randomization

 - A poor plate layout
 - Reference (R) and test samples (A & B) grouped together on the plate
 - A plate effect is likely to impact both series

 - Strip plot design
 - Randomize samples to rows
 - Reverse dilutions in the bottom half of the plate
 - A potential plate effect is averaged away through randomization
Similarity and equivalence tests

- Similarity is the condition in bioassay that a test sample behaves as a simple dilution/concentration of the standard.

\[F_T(z) = F_S(\rho \cdot z) \]

- "Equivalent" slopes
 In parallel line analysis

- "Equivalent" shape (a,b,d)
 In parallel line analysis

- "Equivalent" intercepts
 In slope ratio analysis
Similiarity and equivalence tests (cont.)

- Test of parallelism
 - Paradox: a formal test of parallelism rewards sloppy work, and penalizes good work
 - The greater the precision in the data, the more likely you will fail the test of parallelism
 - Solution – use an equivalence test
 - Determine an acceptable range in a metric of difference (LAL, UAL)
 - Demonstrate (with confidence) that there’s an acceptable difference

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=4</td>
<td>N=6</td>
<td>N=8</td>
</tr>
</tbody>
</table>

Note: Rewarded for good design
Implementing Equivalence Testing for Similarity

- Choose a measure of non-similarity
 - In the parallel line case, could be the difference or ratio of slopes
 - For slope-ratio assays the measure of non-similarity is the difference of y-intercepts
 - For the four-parameter logistic model, similarity must be addressed on the basis of three parameters: the slope and the upper and lower asymptotes
 - Can be addressed for each parameter separately
 - Parameters or parameter combinations which are “biologically meaningful”
 - Issue with statistical multiplicity
 - A single composite measure of “similar performance”
Implementing Equivalence Testing for Similarity (cont.)

- Four bases for determining an equivalence margin are discussed in USP Chapter <1032>, Development of Biological Assays
 - **Approach 1**: compile historical data that compare the reference to itself, and derive a tolerance interval* for the measure of non-similarity
 - Standard statistical process control (SPC) approach
 - Controls “manufacturer’s risk” (risk of failing a good assay) but not “consumer’s risk” (risk of passing a bad assay) – see approach 3

* A tolerance interval is a interval containing a fixed percentage of values with specified confidence. Thus a 95%/99% tolerance interval contains 99% of future values with 95% confidence.
Implementing Equivalence Testing for Similarity (cont.)

- **Approach 2**: determine a tolerance interval for the maximum departure from similarity of the confidence interval on the measure
 - Similarity concluded if the confidence interval falls within the interval
 - Protects against passing assays with larger than usual amounts of within-assay variation
Implementing Equivalence Testing for Similarity (cont.)

- Four bases for determining an equivalence margin are discussed in USP Chapter <1032>, Development of Biological Assays
 - **Approach 3**: add data comparing standard to known failures (e.g., degraded samples)
 - Determine a measure of non-parallelism which discriminates between the distributions of ref/ref and ref/failure
 - Note: this method can be used to determine which parameters are sensitive to failures for nonlinear models
 - **Approach 4**: based on what is known about the product and the assay
 - Conventional limits such as (0.80,1.25)
 - Sensitivity might be driven by therapeutic index of the drug
Characterization

- Since bioassay has multiple uses throughout development and post licensure, the bioassay validation might be considered a characterization of the variability of the method.
 - Variance components can be used to design the release assay, stability protocols, and comparability studies.

\[
\text{Format Variability} = 100 \cdot \left(\frac{e^{\frac{\sigma_{\text{Run}}^2}{k} + \frac{\sigma_{\text{Replicate}}^2}{n-k}} - 1}{n-k}\right) \\
\]

<table>
<thead>
<tr>
<th>Reps (n)</th>
<th>Number of Runs (k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.2%</td>
<td>5.1%</td>
<td>4.1%</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.4%</td>
<td>4.5%</td>
<td>3.8%</td>
<td>2.6%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6.0%</td>
<td>4.2%</td>
<td>3.4%</td>
<td>2.4%</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.7%</td>
<td>4.0%</td>
<td>3.3%</td>
<td>2.3%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variance</th>
<th>Component Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Var(Media Lot)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Var(Analyst)</td>
<td>0.0014</td>
</tr>
<tr>
<td>Var(Analyst*Media Lot)</td>
<td>0.0000</td>
</tr>
<tr>
<td>Var(Run(Analyst*Media Lot))</td>
<td>0.0019</td>
</tr>
<tr>
<td>Var(Error)</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

- Significant inter-analyst variability
 - Analyst training
 - Repeat over analysts
Summary

- The USP bioassay chapters offer best practices in bioassay development, validation, and analysis to biologists and statisticians alike

- Adoption of these practices will result in a more reliable tool for product development, and better assurance of quality to patients

- USP Science & Standards Symposium on Biologics & Biotechnology: Advancing Quality Standards through Analytics and Assays, October 3-6, Seattle, WA